Herbicides

Herbicides are used to control grasses, weeds, and other plant pests. These chemical compounds kill plants or inhibit their normal growth. In general, herbicides work by interfering with photosynthesis, so that a plant dies from lack of energy or by a combination of defoliation (leaf removal) and systemic herbicidal action.

Herbicides are used to clear rights-of-way beneath power lines and along railways and roads. In agriculture and forest management, they are used to control weeds or to remove the leaves from some crop plants to facilitate harvesting. While herbicides may be employed in lieu of tillage, their use is more often in conjunction with tillage and other agronomic practices. During wartime, defoliants and other herbicides have been used to destroy plants that an enemy uses for cover during battle or for food.

meosplant-sp-ency-sci-249400-151901.jpgmeosplant-sp-ency-sci-249400-151902.jpg

Types of Herbicides

Herbicides may be selective or nonselective. Selective herbicides, such as amitrole, atrazine, monuron, pyridine, 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), target a particular plant and will kill or stunt weeds among crop plants without injuring the crop. For example, 2,4-D targets soft-stemmed plants, while 2,4,5-T is effective against woody plants. Cereals (grains) are crops particularly suited for treatment with 2,4-D, because the compound does not harm narrow-leafed plants but kills broad-leaved weeds. Selective toxicity minimizes the environmental impact of an herbicide.

Nonselective herbicides (also called broad-spectrum or general-usage herbicides) are toxic to all plants. Examples include dinoseb, diquat, paraquat, and arsenic trioxide. Nonselective compounds are best suited for areas where all plant growth is to be suppressed, such as along railroad rights-of-way.

Some compounds, known as contact herbicides, kill only those plant parts to which they are directly applied. Others, called systemic herbicides, are absorbed through the plant’s foliage or roots and carried to other parts of the plant. When mixed with the soil, some herbicides kill germinating seeds and small seedlings.

Popular inorganic herbicides include ammonium sulfate, sodium chlorate, sulfuric acid solutions, and borate formulations. Among the organic herbicides are the organic arsenicals, substituted amides and ureas, nitrogen heterocyclic acids, and phenol derivatives. Phenoxyaliphatic acids and their derivatives, a major group of organic herbicides, are selective poisons that readily travel from one part of a plant to another.

History

Agricultural societies have used simple chemical herbicides, such as ashes and common salts, for centuries. In 1896 a fungicidal compound known as Bordeaux mixture (a combination of copper sulfate, lime, and water) was found to be effective against some weeds. Subsequently, copper sulfate was employed as a selective weed killer in cereal crops. By the early 1900s sodium arsenate solutions and other selective inorganic herbicidal mixtures had been developed.

In the early 1940s a new generation of herbicidal compounds emerged. In an attempt to mimic natural plant hormones, the defoliant 2,4-D was created. At low concentrations, 2,4-D promotes retention of fruit and leaves; at higher concentrations, it overstimulates plant metabolism, causing leaves to drop off. A related chemical, 2,4,5-T, came into general use in 1948. The years after World War II saw the first large-scale application of herbicides in agriculture and other areas. The new defoliants rapidly gained acceptance because of their effectiveness against broad-leaved weeds in corn, sorghum, small grains, and grass pastures.

A few years after their development, these defoliants were employed as chemical weapons. During its conflict with communist guerrillas in Malaya during the late 1940s and early 1950s, Britain sprayed 2,4,5-T on crops and jungle foliage to deprive the guerrillas of food and cover. The United States conducted a similar antifood and antifoliage campaign in South Vietnam during the 1960s. In this campaign, dubbed Operation Ranch Hand, massive quantities of herbicidal mixtures were sprayed from aircraft onto Vietcong food plantations, infiltration routes, staging areas, and bases. The quantity and frequency of the spraying greatly exceeded recommended levels; in addition, mechanical problems or military need often forced aircraft to dump their herbicide loads all at once, drenching the jungle below. Soldiers, civilians, and the environment were subjected to unusually high concentrations of defoliants.

One of the herbicides used in this campaign was Agent Orange, a mixture that included 2,4-D and 2,4,5-T. Commercial preparations of 2,4,5-T contain varying amounts of dioxin, a highly toxic contaminant. Agent Orange has been implicated in the increased incidence of stillbirths and birth defects among the Vietnamese living in the areas sprayed, in illnesses suffered by American and Australian soldiers who were involved in the operation, and in birth defects among the children of these veterans. In 1970 the United States placed severe restrictions on domestic and agricultural use of 2,4,5-T, at about the same time the defoliation campaign was halted.

US Regulation of Herbicides

In 1947 the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) authorized the US Department of Agriculture (USDA) to oversee registration of herbicides and other pesticides and to determine their safety and effectiveness. In December 1970, the newly formed Environmental Protection Agency (EPA) assumed statutory authority from the USDA over pesticide regulations. Under the Federal Environmental Pesticide Control Act of 1972, an amendment to FIFRA, manufacturers must register all marketed pesticides with the EPA before the product is released. Before registration, the chemicals must undergo exhaustive trials to assess their potential impact on the environment and human health. An EPA decision to grant registration is based on the determination that unreasonable adverse effects on human health or the environment are not anticipated within the constraints of approved usage. Since October, 1977, the EPA has classified all pesticides to which it has granted registration as either restricted-usage (to be applied only by certified pest control operators) or unclassified (general-usage) pesticides. The EPA also sets worker protection standards. These regulations are meant to ensure that workers are trained and informed about the use of pesticides. Laws like the OSHA, the Occupational Safety Act, mandate employers to provide their staff with equipment to protect them from pesticide setting. Other EPA regulations include the Food and Drugs Act (FDA), meant to regulate the amount of pesticide allowed in food, and the Safe Drinking Water Act (SDWA), which gives EPA the authority to limit maximum contaminant levels for pesticides in drinking water.

Bibliography

Carson, Rachel. Silent Spring. 1962. Reprint. Boston: Houghton Mifflin, 1994. A hard look at the effects of insecticides and pesticides on songbird populations throughout the United States, whose declining numbers yielded the silence to which the title attests.

Cremlyn, R. J. Agrochemicals. New York: Wiley, 1991. Discusses the growth in sophistication and application of chemical pesticides or agrochemicals since World War II. Physiochemical factors and biochemical reactions are discussed as an introduction to subsequent chapters dealing with major chemical groups used to control different kinds of pests.

Crone, Hugh D. Chemicals and Society. New York: Cambridge University Press, 1986. Includes an extended discussion on herbicides, toxicity, public perception, and the use of Agent Orange.

Hansen, Gary W., Floyd E. Oliver, and N. E. Otto. Herbicide Manual. Washington, D.C.: U.S. Department of the Interior, Bureau of Reclamation, 1983. Provides information on herbicides and their composition, mode of action, and use.

Rao, V. S. Principles of Weed Science. 2d ed. Enfield, N.H.: Science Publishers, 2000. Rao discusses the application of technology to meet the challenges of the emergence of weeds resistant to herbicides, shifts in weed flora, and concerns about the safety of herbicides.

“The EPA, the Endangered Species Act & Pesticides.” Farming 1970s to Today, www.livinghistoryfarm.org/farminginthe70s/pests‗02.html. Accessed 24 Feb. 2017.

Ware, George W. Complete Guide to Pest Control. 3d ed. Fresno, Calif.: Thomson Publications, 1996. Provides information on herbicides and their composition, mode of action, and use.

Zimdahl, Robert L. Fundamentals of Weed Science. 2d ed. San Diego: Academic Press, 1999. Covers new developments in weed science as well as relevant aspects of the discipline’s historical development. The focus is on weed biology and ecology, but coverage of herbicides and chemical weed control is also included.